Korovkin-Type Theorems for ModularΨ-A-Statistical Convergence
نویسندگان
چکیده
منابع مشابه
Fibonacci statistical convergence and Korovkin type approximation theorems
The purpose of this paper is twofold. First, the definition of new statistical convergence with Fibonacci sequence is given and some fundamental properties of statistical convergence are examined. Second, we provide various approximation results concerning the classical Korovkin theorem via Fibonacci type statistical convergence.
متن کاملGeneralization of Statistical Korovkin Theorems
The classical Korovkin theory enables us to approximate a function by means of positive linear operators (see, e.g., [1– 3]). In recent years, this theory has been quite improved by some efficient tools inmathematics such as the concept of statistical convergence from summability theory, the fuzzy logic theory, the complex functions theory, the theory of q-calculus, and the theory of fractional...
متن کاملKorovkin type approximation theorems in B-statistical sense
In this paper we consider the notion of A2 -statistical convergence for real double sequences which is an extension of the notion of AI -statistical convergence for real single sequences introduced by Savas, Das and Dutta. We primarily apply this new notion to prove a Korovkin type approximation theorem. In the last section, we study the rate of A2 -statistical convergence.
متن کاملStatistical Convergence Applied to Korovkin-type Approximation Theory
We present two general sequences of positive linear operators. The first is introduced by using a class of dependent random variables, and the second is a mixture between two linear operators of discrete type. Our goal is to study their statistical convergence to the approximated function. This type of convergence can replace classical results provided by Bohman-Korovkin theorem. A particular c...
متن کاملOn statistical type convergence in uniform spaces
The concept of ${mathscr{F}}_{st}$-fundamentality is introduced in uniform spaces, generated by some filter ${mathscr{F}}$. Its equivalence to the concept of ${mathscr{F}}$-convergence in uniform spaces is proved. This convergence generalizes many kinds of convergence, including the well-known statistical convergence.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces
سال: 2015
ISSN: 2314-8896,2314-8888
DOI: 10.1155/2015/160401